Towards a Data Science for the Person

Contributions to the Promotion of Human Rights in Vulnerable Contexts

Authors

Keywords:

data science, development, vulnerable contexts, economic, social and cultural rights, humanistic perspective

Abstract

Nowadays data science is emerging as one of the most powerful tools for understanding and, consequently, transforming social reality. The growing relevance of this discipline invites us to reflect on its multiple applications, within a debate that raises questions about the need to go beyond uses driven only by technical or economic objectives. This paper focuses on a humanistic approach to data science, particularly on its potential to contribute to the respect and promotion of economic, social and cultural rights (ESCR) in vulnerable contexts. These rights cover a set of key issues related to access to education and training, health services, adequate nutrition, and dignified work, among other aspects. In this context we argue that an ethical use of data science tools can provide valuable resources to strengthen the protection of essential human rights in territories that lack adequate levels of development. 

Downloads

Download data is not yet available.

References

Alberici, A. (2002). Imparare sempre nella società della conoscenza. Mondadori.

Crespo, F., Alves, T., y Soto, M. (2022). Ciencia de Datos, Inteligencia Artificial, y sus impactos sobre la sociedad. Observatorio Económico, 169, 9-11. https://doi.org/10.11565/oe.vi169.474

Esposti, R. (2013). Conoscenza, tecnologia e innovazione per un’agricoltura sostenibile: lezioni dal passato, paradossi del presente e sfide per il futuro. Rivista Agriregionieuropa, 9(32), 61-65. Recuperado de: https://flore.unifi.it/retrieve/e398c378-e3cb-179a-e053-3705fe0a4cff/agriregionieuropa_n32.pdf

EU SCAR AKIS. (2019). Preparing for Future AKIS in Europe. European Commission. https://knowledge4policy.ec.europa.eu/publication/preparing-future-akis-europe_en

Francisco (2015). Carta encíclica Laudato si’. https://www.vatican.va/con-tent/francesco/es/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.html

Lemus-Delgado, D. y Pérez Navarro, R. (2020). Ciencia de datos y estudios globales: aportaciones y desafíos metodológicos. Colombia Internacional, 102, 41-62. https://doi.org/10.7440/colombiaint102.2020.03

Mazorra, A. P. y Hoggart, K. (2002). Lo rural, ¿hechos, discursos o representaciones? Una perspectiva geográfica de un debate clásico. ICE, Revista de Economía, 1(803). https://www.revistasice.com/index.php/ICE/article/view/424

Pisoni, L. (2024). Fundamentos epistemológicos de la política agrícola común de la Unión Europea: hacia un paradigma pluralista. Cultura económica, 42(108), 101-111. https://doi.org/10.46553/cecon.42.108.2024.p101-111

Rosa, J. M. y Frutos, E. L. (2022). Ciencia de datos en salud: desafíos y oportunidades en América Latina. Revista Médica Clínica Las Condes, 33(6), 591-597. https://doi.org/10.1016/j.rmclc.2022.09.007

Sandoval Serrano, L. J. (2018). Algoritmos de aprendizaje automático para análisis y predicción de datos. Revista Tecnológica, 11, 36-40. http://www.redicces.org.sv/jspui/bitstream/10972/3626/1/Art6_RT2018.pdf

Sotte, F. (2013). Scenari evolutivi del concetto di ruralità. Proposte e Ricerche n.71, Università degli Studi di Camerino.

Valdovinos Rosas, R. M., Montes Venegas, H. A., Delgado Hernández, D. J. y Salas García, J. (2023). Qué es la ciencia de datos. Revista Universitaria, 6(43), 68–71. https://revistauniversitaria.uaemex.mx/article/view/20965

Published

01-12-2025

How to Cite

Pisoni, L. (2025). Towards a Data Science for the Person: Contributions to the Promotion of Human Rights in Vulnerable Contexts. Español, (7), 47–54. Retrieved from https://studium.unsta.edu.ar/index.php/CCH/article/view/1198